STRUCTURES OF ISORORIDIN E, EPOXYISORORIDIN E, AND EPOXY- AND DIEPOXYRORIDIN H, NEW METABOLITES ISOLATED FROM <u>CYLINDROCARPON</u> SPECIES DETERMINED BY CARBON-13 AND HYDROGEN-1 NMR SPECTROSCOPY.

REVISION OF C-2':C-3' DOUBLE BOND CONFIGURATION OF THE RORIDIN GROUP

Makoto Matsumoto, Hitoshi Minato, Kazuo Tori\* and Masako Ueyama Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan (Received in Japan 22 September 1977; received in UK for publication 3 October 1977)

Recently, the structures of vertisporin<sup>1</sup> (1) and baccharin<sup>2</sup> (2), trichothecene epoxides having significantly interesting biological activities, have been determined on the basis of the chemical and spectroscopic evidence and by a direct single-crystal X-ray analysis, respectively. The structure elucidation of these antibiotics has shed a light on the stereochemistry of the side-chain of the roridin group,<sup>3</sup> since an X-ray crystal analysis of <u>p</u>-iodobenzenesulphonate of verrucarin A (3) had only been known so far.<sup>4</sup> We obtained roridin H<sup>5</sup> (4) and six new antibiotics from a species of <u>Cylindrocarpon</u> (strain PF-60),<sup>6</sup> and wish to report here the structural elucidation of four 5-8 of these new metabolites together with a revision of the C-2':C-3' double-bond configurations of roridin E<sup>7</sup> (9) and H (4) mainly by NMR spectroscopy.

Compound 5, named isororidin E (5),  ${}^{6}C_{29}H_{38}O_{8}$ , mp 200-202° (EtOAc), was distinguished in its  $[\alpha]_{D}$  value (-65.1°)  ${}^{6}$  from that of roridin E (9) (-16°), since its IR, UV, and  ${}^{13}C$  and  ${}^{1}H$ . NMR (see the TABLE) were found to be similar to those of 9. Thus, it was assumed that 5 is a stereoisomer or a geometrical isomer of 9 in its side-chain.

We firstly carried out NOE experiments for the 100-MHz <sup>1</sup>H NMR spectra of 5 and 9, the latter of which was reported to have H-2' and Me-3' in <u>cis</u>-relationship.<sup>3</sup> However, we could not observe any NOE between H-2' and Me-3', surprisingly, whereas we obtained <u>ca</u>. 15% NOE enhancement of the H-10 signal on saturation of the Me-9 signal for both 5 and 9. Therefore, 5 and 9 were found to have the same <u>trans</u> configuration at C-2':C-3', and the configuration of the latter 9 should be revised.

Thus, 5 was hydrolized with 2%  $K_2CO_3$  at room temperature to give vertucarol<sup>8</sup> (10) and carboxylic acids. The acid fraction was esterified with  $CH_2N_2$  and separated by preparative TLC on silica gel into methyl esters 11 and 11', and unidentified two esters. Ester 11 was found to resemble closely the corresponding ester<sup>9</sup> 12 from 9 in UV, IR, and <sup>1</sup>H NMR spectra, but its  $[\alpha]_D$  value (-62.3°) was undoubtedly different from that of 12 (+43°). Therefore, 5 was determined to be a stereoisomer of 9 at C-6' or C-13', as the <sup>1</sup>H NMR spectra of 11 and 12 did not coincide. Another methyl ester 11' was assumed to be a C-3':C-4' double-bond isomer of 11 from its spectral data.

Compound 6,<sup>6</sup>  $C_{29}H_{36}O_9$ , mp 216-219°, resembles 5 in its <sup>13</sup>C spectrum except that it showed two O-<u>CH</u> signals at  $\delta_C$  50.8 and 56.1 instead of the <u>CH</u><sub>2</sub> signals at C-7 ( $\delta_C$  22.7) and C-8 (27.7) of 5 (see the TABLE). Thus, 6 was assumed to be 7,8-epoxyisororidin E. The magnitudes







6: R = O  $\tilde{9}$ : R = H<sub>2</sub>: Roridin E<sup>7</sup>

(Stereoisomer)

6











2: Baccharin<sup>2</sup>



3: Verrucarin A<sup>3,4</sup>



5.(9)







 $\underbrace{14:}_{15:}^{9} R = C$ 



 $\begin{array}{l} 4: \ \mathsf{R} = \mathsf{H}_2: \ \mathsf{Roridin} \ \mathsf{H}^5 \\ \widetilde{\mathsf{Z}}: \ \mathsf{R} = \mathsf{O} \end{array}$ 







|               |                                           |                                                              | ,                                         |                            |                                                             |                                                              |
|---------------|-------------------------------------------|--------------------------------------------------------------|-------------------------------------------|----------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Posi-<br>tion | Roridine E<br>(9)                         | Isororidin E<br>(5)                                          | 7β,8β-Epoxyiso-<br>roridin E (6)          | Roridin H<br>(4)5,10       | 7β,8β-Epoxy-<br>roridin H (7)                               | 7β,8β,2',3'-<br>diepoxyroridin<br>Η (8)                      |
| 2             | 79.3 (3.82d)                              | 79.2(3.84d)                                                  | 79.2 (3.90d)                              | 79.0 (3.8d)                | 79.3 (3.91d)                                                | 79.2(3.90d)                                                  |
| 3             | 35.8 (2.04dd                              | $\begin{array}{c} 1)  36.6(2.03ddd) \\ (2.58dd) \end{array}$ | 36.6 (2.06ddd)<br>(2.55dd)                | 34.8 ( c )                 | 35.0(2.15ddd)<br>(2.40dd)                                   | 34.8(2.26ddd)<br>(2.45dd)                                    |
| 4             | 74.2 (6.20dd)                             | 75.3(6.35dd)                                                 | 74.6 (6.30dd)                             | 74.0(~5.9)                 | 73.6 (5.87dd)                                               | 73.9(5.89dd)                                                 |
| 5             | 48.4                                      | 48.5                                                         | 47.0                                      | 48.9                       | 48.2                                                        | 48.5                                                         |
| 6             | 42.8                                      | 42.6                                                         | 44.0                                      | 43.2                       | 44.2                                                        | 44.7                                                         |
| 7             | 21.6 ( c )                                | 22.7( c )                                                    | 50.8 (3.34dd)<br>[4.0,3.2 <sup>f</sup> ]  | 20.5 ( c )                 | 50.9 (3.75dd)<br>[4.0,3.0 <sup>f</sup> ]                    | 50.9(3.62dd)<br>[3.9,3.0 <sup>f</sup> ]                      |
| 8             | 27.7 (c)                                  | 27.7( c )                                                    | 56.1 (3.17dd)<br>[4.0,2.1 <sup>8</sup> ]  | 27.6 (с)                   | 57.2 (3.17dd)<br>[4.0,2.18]                                 | 56.3(3.18dd)<br>[3.9,1.9 <sup>g</sup> ]                      |
| 9             | 140.0                                     | 140.1                                                        | 138.2                                     | 139.9                      | 138                                                         | 138.6                                                        |
| 10            | 117.8 (5.47dm)                            | ) 118.9(5.50dm)                                              | 123.0 (5.75dq)                            | 118.6 <sup>d</sup> (5.42d) | 123.0 (5.69d)                                               | 122.4(5.67dm)                                                |
| 11            | 67.2 (3.89dm)                             | ) 66.7(4.09d)                                                | 66.7 (4.21dd)                             | 67.6 (3.64)                | 67.9 (4.08m)                                                | 67.3(3.75dd)                                                 |
| 12            | 65.6                                      | 65.7                                                         | 65.7                                      | 65.3                       | 65.5                                                        | 65.3                                                         |
| 13            | 48.1 (2.81d)<br>(3.12d)                   | 47.7(2.83d)<br>(3.15d)                                       | 48.3 (2.99d)<br>(3.21d)                   | 47.3 (2.96dd)              | 47.9°(2.98d)<br>(3.18d)                                     | 48.0(2.97d)<br>(3.18d)                                       |
| 14            | 6.7 (0.79s)                               | 6.4(0.80s)                                                   | 7.2 (1.02s)                               | 7.0 (0.85s)                | 8.2 (1.12s)                                                 | 8.5(1.12s)                                                   |
| 15            | 63.7 (3.93d)<br>(4.32d)                   | 64.5(4.06d)<br>(4.16d)                                       | 62.9 (3.79d)<br>(4.07d)                   | 63.0 (4.15dd)              | 65.8 (3.41d)<br>(4.43d)                                     | 65.6(4.44s)                                                  |
| 16            | 23.2.(1.71bs)                             | ) $23.2(1.71bs)$                                             | 21.9.(2.00d)                              | 22.9 (1.69s)               | 22.0 (1.98d)                                                | 22.0(2.01d)                                                  |
| 1'            | 165.8 <sup>d</sup>                        | 166.3                                                        | 165.9 <sup>d</sup>                        | 166.0,                     | 165.9                                                       | 167.8                                                        |
| 2'            | 119.0 (5.95a)                             | 119.5(5.83g)                                                 | 119.1 (5.80g)                             | 119.0 <sup>d</sup> (5.67s) | 118.7 <sup>a</sup> (5.69q)                                  | 59.2(3.29s)                                                  |
| 3'            | 159.0                                     | 158.0                                                        | 159.0                                     | 154.4                      | 155.6                                                       | 60.8                                                         |
| 4'            | 41.3 ( c )                                | 40.0( c )                                                    | 40.1 ( c )                                | 47.7 (2.64d)               | 47.7 <sup>e</sup> (2.32m)<br>(2.41m)                        | 44.0(1.57dd)<br>(2.32dd)                                     |
| 5'            | 69.8 (c)                                  | 67.0( c )                                                    | 67.0 ( c )                                | 100.8 (5.58dd)             | 101.0 (5.54dd)                                              | 101.1(5.37dd)                                                |
| 6'            | 83.8 (3.70m)                              | 83.2(3.74m)                                                  | 83.3 (3.75m)                              | 81.9 (4.03)<br>• [6]       | 82.0 (4.06ddd)<br>[8.0,2.3, <sup>h</sup> 2.0 <sup>1</sup> ] | 82.7(4.17ddd)<br>[[8.0,2.2, <sup>h</sup> 1.8 <sup>i</sup> ]  |
| 7'            | 138.1 (5.89dd<br>[16.0.2.0 <sup>h</sup> ] | ) $135.2(5.71dd)$<br>$\lceil 16.0.6.0^{h} \rceil$            | 135.5 (5.77dd)<br>[15.9.∿5 <sup>f</sup> ] | 134.6 (5.9m)               | 135.4 (5.95dd)<br>[15.4,2.3 <sup>h</sup> ]                  | 134.6(5.98ddd)<br>[15.5,3.0, <sup>]</sup> 2.2 <sup>h</sup> ] |
| 8'            | 126.6 (7.51dd                             | 131.0(7.55dd)                                                | $1\overline{3}0.5(7.5\overline{4}dd)$     | 126.2 (7.68dd)             | 126.2 (7.76ddd)                                             | 126.8(7.60ddd)                                               |
| •             | [16.0.11.2]                               | [16.0.11.0]                                                  | [15.9.11.0]                               | [15.5,11]                  | [15.4,11.4,2.0 <sup>1</sup>                                 | [15.5,11.3,1.8 <sup>i</sup> ]                                |
| 9'            | 143.7 (6.56dd                             | ) $142.0(6.60dd)$                                            | 142.4 (6.62dd)                            | 142.5 (6.55t)              | 143.4,(6.58dd)                                              | 142.7(6.62dd)                                                |
| 10'           | 117.2.(5.73d)                             | 117.1(5.82d)                                                 | 116.7, (5.83d)                            | 118.9 <sup>a</sup> (5.79d) | 118.4 <sup>a</sup> (5.79d)                                  | 119.0(5.88d)                                                 |
| 11'           | 166.4 <sup>d</sup>                        | 166.3                                                        | 166.2 <sup>d</sup>                        | 166.0                      | 165.9                                                       | 166.9                                                        |
| 12'           | 20.2 (2.25d)                              | 19.8(2.22d)                                                  | 20.0 (2.24d)                              | 18.2 (2.27s)               | 18.4 (2.28d)                                                | 17.1(1.60s)                                                  |
| 13'           | 70.5 (3.7m)                               | 69.6(3.7m)                                                   | 69.7 (3.7m)                               | 76.8 (3.65m)               | 77.1 ( c )                                                  | 76.3(3.7m)                                                   |
| 14'           | 18.3 (1.19d)                              | 18.5(1.17d)                                                  | 18.5 (1.16d)                              | 16.3 (1.32d)               | 16.5 (1.34d)                                                | 15.8(1.33d)                                                  |

TABLE. <sup>13</sup>C and <sup>1</sup>H NMR Spectral Data in  $CDCl_3$ , <sup>a</sup>  $\delta_C$  (±0.1),  $\delta_H$  (±0.02, in parentheses), and  $J_{H,H}$  (±0.2, in square bracket)<sup>b</sup>

<sup>a</sup> Natural-abundance <sup>1</sup>H-noise-decoupled <sup>13</sup>C FT NMR spectra were measured by a Varian NV-14 FT NMR (15.087 MHz) or a CFT-20 (20 MHz) spectrometer in 8-mm tubes using TMS as an internal reference ( $\delta_{\rm C}$  0). The <sup>13</sup>C signals were assigned using <sup>1</sup>H single-frequency off-resonance decoupling techniques, and known chemical-shift rules, and by comparisons with the literature data, <sup>1,10,13,14</sup> and from compound to compound. <sup>1</sup>H NMR spectra were recorded on a Varian HA-100 spectrometer operating at 100 MHz in the TMS-locked mode. <sup>b</sup> Shown only where necessary for the structure elucidation. <sup>c</sup> Not determined. <sup>d,e</sup> These assignments may be interchanged in each vertical column. <sup>f</sup> J<sub>7\alpha,11\alpha</sub>. <sup>g</sup> J<sub>8a,10</sub>. <sup>h</sup> J<sub>6',7'</sub>. <sup>i</sup> J<sub>6',8'</sub>. <sup>j</sup> J<sub>7',13'</sub>.

of long-range spin-couplings between H-7 and H-11 (3.2 Hz) and between H-8 and H-10 (2.1 Hz) determined by double and triple resonance experiments at 100-MHz <sup>1</sup>H NMR (see the TABLE) showed that the epoxide ring is attached to the  $\beta$ -position.

When 6 was hydrolized with 2%  $K_2$ CO $_3$  in MeOH for 6 days at room temperature, it gave carboxylic acids and an alcohol 13. The acid fraction was esterified with  $CH_2N_2$  and separated by preparative TLC to give two methyl esters, which were confirmed to be  $11_{2}$  and  $11'_{2}$  by comparison with their spectral and  $[\alpha]_{\rm p}$  data. Alcohol 13 was obtained as colorless crystals,  $C_{15}H_{20}O_5$ , mp >300° (sublim. at 200°), M<sup>+</sup> 280, and gave a monoacetate 13a, which has a free tertiary OH. Crotocol (15) was obtained by hydrolysis of crotocin (14)<sup>9</sup> and converted into a diol 16 through the opening of the 12,13-epoxide ring induced by the cleavage of the 78,88-epoxide on heating in 5% NaOH. Alcohol 13 may be obtained by the same double ring-opening reaction as in the case of 16. The  $^{
m I}$ H NMR spectrum of 13a showed no signals due to the two epoxide rings. Detailed double and triple resonance experiments revealed the structure of 13a as expected. As a result, 6 was determined to be  $7\beta$ , $8\beta$ -epoxyisororidin E. In this case also, we could observe no NOE between H--2' and Me-3'.

Compound 7,  $C_{29}H_{34}O_9$ , amorphous powder,<sup>6</sup> and compound 8,  $C_{29}H_{34}O_{10}$ , mp 291-293° (decomp.),<sup>6</sup> were assumed to be roridin H derivatives from their <sup>13</sup>C and <sup>1</sup>H NMR spectral comparisons. Signals due to the central trichothecene moieties of 7 and 8 were found to be identical with that of 6, and those due to the side-chain of 7 are also identical with those of 4 (see the TABLE). 5,10 Therefore, 7 was revealed to be  $7\beta,8\beta$ -epoxyroridin H. In this case also, no NOE was observed between H-2' and Me-3' as well as those in 4. The  ${}^{13}$ C and  ${}^{1}$ H spectra of 8 resemble those of 7 except for the signals due to C-2', C-3', C-4', C-12', and the corresponding protons. These spectral differences are quite similar to those between 9 and its 2', 3'-epoxide, i.e., roridin D.  $^{10,11}$  Therefore, 8 was assigned to  $7\beta$ ,  $8\beta$ , 2', 3'-diepoxyroridin H.

As a conclusion, we suggest based on the  $\delta_{H}^{-}$  and J-values obtained from the H-6' and H-7' signals (see the TABLE) that 9 has the same absolute configurations at C-6'( $\underline{R}$ ) and C-13'( $\underline{R}$ ) with those of 2  $(J_{6',7'} = 2 \text{ Hz})$ , <sup>12</sup> and that 5 and 6 have the  $(6'\underline{S})$  and  $(13'\underline{R})$ -configurations  $(J_{6',7'} = 6 \text{ Hz})$ . It should be emphasized that the C-2':C-3' double-bond configuration must be revised at least in roridins E and H,<sup>3</sup> whereas it should not in vertisportin<sup>1</sup> and probably satratoxin H.<sup>13</sup>

## REFERENCES

- (1) H. Minato, T. Katayama and K. Tori, <u>Tetrahedron Lett</u>. 2579 (1975).
- (2) S. M. Kupchan, B. B. Jarvis, R. G. Dailey, Jr., W. Bright, R. F. Bryan and Y. Shizuri, J. Am. Chem. Soc. <u>98</u>, 7092 (1976). (3) For a review, see Ch. Tamm, Fortschr. Chem. Org. Naturst. <u>31</u>, 63 (1974).

- (4) A. T. McPhail and G. A. Sim, J. Chem. Soc. (C) 1394 (1966).
  (5) P. Traxler and Ch. Tamm, <u>Helv. Chim. Acta 53</u>, 1846 (1970).
  (6) M. Matsumoto, H. Minato, N. Uotani, K. Matsumoto, and E. Kondo, J. <u>Antibiotics</u> in press; characterization of 5-8, are given here.
- (7) P. Traxler, W. Zürcher and Ch. Tamm, <u>Helv. Chim. Acta</u> <u>53</u>, 2071 (1970).
  (8) J. Gutzwiller, R. Mauli, H. P. Sigg and Ch. Tamm, <u>Ibid.</u> <u>47</u>, 2234 (1964).
- (9) J. Gyimesi and A. Melera, <u>Tetrahedron Lett</u>. 1665 (1967).
- (10) W. Breitenstein and Ch. Tamm, <u>Helv. Chim. Acta</u> <u>58</u>, 1172 (1975). (11) B. Böhner and Ch. Tamm, <u>Ibid</u>. <u>49</u>, 2547 (1966). (12) For 2,  $\delta_{H-7}$ , 5.98,  $\delta_{H-8}$ , 7.48,  $\delta_{H-9}$ , 6.60,  $J_{6',7'}$  2 Hz.<sup>2</sup>

- (13) R. M. Eppley, E. P. Mazzola, R. J. Highet and W. J. Bailey, J. Org. Chem. 42, 240 (1977).
   (14) J. R. Hanson, T. Marten and M. Siverns, J.C.S. Perkin I 1033 (1974); R. A. Ellison and F. N. Kotsonis, J. Org. Chem. 41, 576 (1976).